Section 5.1: Rotational Kinematics

This section introduces rotational motion, angular displacement, velocity, and acceleration. We draw parallels to linear motion for easier understanding.

Rotational Kinematics Formulas:
  • Angular displacement: \( \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \)
  • Angular velocity: \( \omega = \omega_0 + \alpha t \)
  • Relation to linear motion: \( s = r\theta, v = r\omega, a = r\alpha \)

Example 1

A wheel starts from rest and accelerates at \( 2 \, \text{rad/s²} \). Find its angular velocity after 5 s.

\( \omega = \omega_0 + \alpha t = 0 + 2 \times 5 = 10 \, \text{rad/s} \)

Example 2

A disk rotates with \( \omega_0 = 5 \, \text{rad/s} \) and \( \alpha = 1 \, \text{rad/s²} \) for 4 s. Find angular displacement.

\( \theta = \omega_0 t + \frac{1}{2}\alpha t^2 = 5*4 + 0.5*1*16 = 20 + 8 = 28 \, \text{rad} \)

Practice Problems

  1. A wheel accelerates from rest at 3 rad/s² for 6 s. Find angular velocity.
  2. A turntable rotates at 10 rad/s and slows with α = -2 rad/s². How long until it stops?
  3. A disk rotates with α = 0.5 rad/s² for 10 s. Find angular displacement.
  4. Relate linear distance traveled at rim radius 0.5 m to angular displacement 4 rad.
  5. A rotating wheel with ω₀ = 3 rad/s accelerates at 1 rad/s² for 7 s. Find final ω and θ.