Section 2.4: Satellite Orbits

Satellites move in orbits due to the balance between gravitational pull and their inertia. Understanding orbital mechanics allows calculation of velocity, period, and altitude for stable orbits.

Orbital Velocity:

\( v = \sqrt{\frac{GM}{r}} \), where \( r \) is distance from center of Earth (or planet).

Orbital Period:

\( T = 2\pi \sqrt{\frac{r^3}{GM}} \)

Example 1

Find the velocity of a satellite orbiting 500 km above Earth's surface.

Earth radius \( R = 6370 \text{ km} \), altitude \( h = 500 \text{ km} \), so \( r = R+h = 6870 \text{ km} = 6.87\times10^6 \text{ m} \)

\( v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{6.674\times10^{-11}*5.97\times10^{24}}{6.87\times10^6}} \approx 7.6 \text{ km/s} \)

Example 2

Compute the orbital period of the same satellite.

\( T = 2\pi \sqrt{\frac{r^3}{GM}} = 2\pi \sqrt{\frac{(6.87\times10^6)^3}{6.674\times10^{-11}*5.97\times10^{24}}} \approx 5670 \text{ s} \approx 1.57 \text{ hours} \)

Practice Problems

  1. Find the orbital velocity of a satellite at 1000 km above Earth.
  2. Determine the period of a geostationary satellite.
  3. Calculate the altitude for a satellite with period 90 minutes.
  4. Find the speed of a satellite orbiting Mars at 4000 km from its center (Mars mass \(6.42×10^{23} kg\)).
  5. Compute centripetal acceleration of a satellite at 800 km above Earth.
  6. Find radius of circular orbit if a satellite’s orbital speed is 3 km/s.
  7. Calculate gravitational force on a 500 kg satellite at 500 km altitude.
  8. A satellite completes an orbit in 2 hours. Find orbital radius.
  9. Determine the escape velocity at 1000 km above Earth.
  10. Find velocity and period for a satellite in low Earth orbit at 300 km.