Section 4.1: Complex Numbers Introduction

This section introduces complex numbers, including imaginary units, standard form, and basic arithmetic.

Example 1: Identifying Complex Numbers

Write each number in standard form a + bi:

  • \( \sqrt{-9} \)
  • \( 5 - \sqrt{-16} \)

\( \sqrt{-9} = 3i \)

\( 5 - \sqrt{-16} = 5 - 4i \)

Example 2: Adding Complex Numbers

Simplify \( (3 + 2i) + (1 - 5i) \).

Step 1: Add real parts: 3 + 1 = 4

Step 2: Add imaginary parts: 2i - 5i = -3i

Result: \( 4 - 3i \)

Practice Problems

  1. Express \( \sqrt{-25} \) in standard form
  2. Simplify \( (2 + 3i) + (4 - i) \)
  3. Simplify \( (5 - 2i) - (3 + 6i) \)
  4. Multiply \( i \cdot (3 + 4i) \)
  5. Simplify \( (2i)^2 + 3i \)