Section 4.4: Energy and Inclined Surfaces
When a block moves on an inclined surface, its gravitational potential energy and kinetic energy change depending on height and speed. Inclined surfaces affect acceleration and energy conversion.
If friction exists, subtract work done by friction: \( W_f = f_k L = \mu_k m g \cos \theta \cdot L \)
Example 1
A 2 kg block slides down a frictionless incline of 30° and length 5 m. Find its speed at the bottom.
Height: \( h = 5 \sin 30^\circ = 2.5 \, m \)
\( v = \sqrt{2 g h} = \sqrt{2 \cdot 9.8 \cdot 2.5} \approx 7 \, \text{m/s} \)
Example 2
A 3 kg block slides down a 4 m incline with \(\mu_k = 0.1\). Incline angle 20°. Find speed at bottom.
Height: \( h = 4 \sin 20^\circ \approx 1.37 \, m \)
Friction work: \( W_f = \mu m g \cos \theta \cdot L = 0.1 \cdot 3 \cdot 9.8 \cdot \cos 20^\circ \cdot 4 \approx 11.5 \, J \)
Initial PE: \( m g h = 3 \cdot 9.8 \cdot 1.37 \approx 40.2 \, J \)
KE at bottom: \( 40.2 - 11.5 = 28.7 \Rightarrow v = \sqrt{2 \cdot 28.7 / 3} \approx 4.37 \, m/s \)
Practice Problems
- A 5 kg block slides down a frictionless 10 m incline at 25°. Find speed at bottom.
- Inclined plane, 3 m long, \(\mu_k = 0.2\), block mass 2 kg, angle 30°. Find speed at base.
- Block starts from rest at height 4 m. Incline angle 15°, frictionless. Determine kinetic energy at bottom.
- Incline length 6 m, angle 20°, block mass 1.5 kg, \(\mu_k = 0.05\). Compute work done by friction.
- A block slides down incline. Initial PE 50 J, friction 10 J. Find KE at bottom.