Section 6.3: Exponential Functions

An exponential function has the form \( f(x) = a \cdot b^x \), where \( a \neq 0 \), \( b > 0 \), and \( b \neq 1 \). It models growth or decay.

Example 1

Evaluate \( f(x) = 2 \cdot 3^x \) for \( x = 4 \)

\( f(4) = 2 \cdot 3^4 = 2 \cdot 81 = 162 \)

Example 2

Identify if \( g(x) = 5 \cdot (1/2)^x \) represents growth or decay.

Since the base \( 1/2 < 1 \), this is exponential decay.

Example 3

Find \( h(3) \) for \( h(x) = 4 \cdot 2^x \)

\( h(3) = 4 \cdot 2^3 = 4 \cdot 8 = 32 \)

Practice Problems

  1. Evaluate \( f(x) = 3 \cdot 5^x \) for \( x = 2 \)
  2. Determine growth or decay for \( g(x) = 7 \cdot (3/4)^x \)
  3. Evaluate \( h(x) = 6 \cdot 2^x \) for \( x = 5 \)
  4. Write an exponential function for doubling every period starting at 2
  5. Write an exponential function for halving every period starting at 8