Section 7.2: Laws of Logarithms

This section covers the key logarithmic properties: the product, quotient, and power laws, and demonstrates how to simplify logarithmic expressions using these laws.

Example 1: Product Law

Simplify \( \log_2 8 + \log_2 4 \).

Step 1: Apply product law: \( \log_2 8 + \log_2 4 = \log_2 (8 \cdot 4) \)

Step 2: Multiply: \( \log_2 32 \)

Step 3: Evaluate: \( \log_2 32 = 5 \)

Example 2: Quotient Law

Simplify \( \log_5 125 - \log_5 25 \).

Step 1: Apply quotient law: \( \log_5 125 - \log_5 25 = \log_5 (125 / 25) \)

Step 2: Simplify: \( \log_5 5 \)

Step 3: Evaluate: \( \log_5 5 = 1 \)

Example 3: Power Law

Simplify \( \log_3 (27^2) \).

Step 1: Apply power law: \( \log_3 (27^2) = 2 \cdot \log_3 27 \)

Step 2: Evaluate \( \log_3 27 = 3 \)

Step 3: Multiply: \( 2 \cdot 3 = 6 \)

Practice Problems

  1. Simplify \( \log_2 16 + \log_2 8 \)
  2. Simplify \( \log_10 1000 - \log_10 10 \)
  3. Simplify \( \log_4 (64^3) \)
  4. Simplify \( \log_3 9 + \log_3 27 \)
  5. Simplify \( \log_5 25^2 - \log_5 5 \)