Section 8.3: Series & Sigma Notation
This section introduces series notation and the use of the sigma (Σ) symbol to represent sums of sequences.
Example 1: Writing a Series Using Sigma Notation
Write the sum 2 + 4 + 8 + 16 + 32 using sigma notation.
Step 1: Recognize the geometric sequence: \( a_1 = 2, r = 2 \)
Step 2: Use sigma notation: \( \sum_{n=0}^{4} 2 \cdot 2^n \)
Example 2: Sum of a Series Using Sigma Notation
Compute \( \sum_{n=1}^{5} 3n \).
Step 1: Expand the sum: 3(1) + 3(2) + 3(3) + 3(4) + 3(5) = 3 + 6 + 9 + 12 + 15
Step 2: Add: 3 + 6 + 9 + 12 + 15 = 45
Practice Problems
- Write 5 + 10 + 20 + 40 + 80 using sigma notation
- Compute \( \sum_{n=1}^{6} 2n \)
- Express 1 + 4 + 9 + 16 + 25 using sigma notation
- Find the sum \( \sum_{n=1}^{5} (3n+2) \)
- Write the first 5 terms of \( 2^n \) in sigma notation