Section 9.1: Simplifying Rational Expressions

A rational expression is a fraction in which the numerator and denominator are polynomials. Simplifying involves factoring and canceling common factors between numerator and denominator.

Example 1

Simplify: \( \frac{x^2 - 9}{x^2 - 3x} \)

Step 1: Factor numerator and denominator.

\( x^2 - 9 = (x-3)(x+3) \)

\( x^2 - 3x = x(x-3) \)

Step 2: Cancel common factor \( (x-3) \).

Result: \( \frac{x+3}{x} \), with restriction \( x \neq 0, 3 \).

Example 2

Simplify: \( \frac{2x^2 + 6x}{4x^2 + 12x} \)

Step 1: Factor numerator and denominator.

Numerator: \( 2x(x+3) \)

Denominator: \( 4x(x+3) \)

Step 2: Cancel common factors \( 2x \) and \( (x+3) \).

Result: \( \frac{1}{2} \), with restriction \( x \neq 0, -3 \).

Practice Problems

  1. Simplify: \( \frac{x^2 - 16}{x^2 - 4x} \)
  2. Simplify: \( \frac{y^2 + 5y + 6}{y^2 + 2y} \)
  3. Simplify: \( \frac{3x^2 - 6x}{9x - 18} \)
  4. Simplify: \( \frac{m^2 - m}{m^2 - 4} \)
  5. Simplify: \( \frac{2a^2 + 8a}{a^2 + 4a + 4} \)