Section 2.3: Quadratic Formula & Roots

This section teaches solving quadratics using the quadratic formula and interpreting roots, including real, repeated, and complex solutions.

Example 1: Solve using Quadratic Formula

Solve \( x^2 - 4x - 5 = 0 \) using the quadratic formula.

Quadratic formula: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

Here, a=1, b=-4, c=-5

Discriminant: \( (-4)^2 - 4(1)(-5) = 16 + 20 = 36 \)

Roots: \( x = \frac{4 \pm 6}{2} \Rightarrow x_1 = 5, x_2 = -1 \)

Example 2: Complex Roots

Solve \( x^2 + 4x + 8 = 0 \).

a=1, b=4, c=8 → Discriminant: \( 16 - 32 = -16 \)

Roots: \( x = \frac{-4 \pm \sqrt{-16}}{2} = \frac{-4 \pm 4i}{2} = -2 \pm 2i \)

Practice Problems

  1. Solve \( x^2 + 3x - 10 = 0 \) using quadratic formula
  2. Solve \( 2x^2 - 4x + 1 = 0 \)
  3. Solve \( x^2 + 6x + 10 = 0 \) and identify complex roots
  4. Verify roots of \( x^2 - 7x + 12 = 0 \)
  5. Find the nature of roots for \( x^2 + 2x + 5 = 0 \)