Section 2.2: Vertex Form & Transformations
This section focuses on rewriting quadratics in vertex form and understanding transformations: shifts, stretches, compressions, and reflections.
Example 1: Convert to Vertex Form
Rewrite \( f(x) = x^2 - 6x + 8 \) in vertex form.
Step 1: Complete the square: \( x^2 - 6x + 8 = (x^2 - 6x + 9) - 1 = (x-3)^2 -1 \)
Step 2: Vertex form: \( f(x) = (x-3)^2 -1 \), Vertex: (3, -1)
Example 2: Transformations
Describe the transformations of \( g(x) = -2(x+1)^2 + 3 \).
- Reflection over x-axis: negative coefficient
- Vertical stretch by factor 2
- Horizontal shift left 1 unit
- Vertical shift up 3 units
Practice Problems
- Rewrite \( f(x) = x^2 + 8x + 12 \) in vertex form
- Rewrite \( h(x) = -x^2 + 4x - 1 \) in vertex form
- Describe the transformations of \( k(x) = 3(x-2)^2 -5 \)
- Find the vertex of \( m(x) = -2x^2 - 8x + 6 \)
- Graph \( f(x) = (x+3)^2 - 4 \) and identify shifts