Section 7.6: Special Factoring Cases

This section covers special factoring patterns: difference of squares, perfect square trinomials, and sum/difference of cubes.

Example 1: Difference of Squares

Factor: \( x^2 - 9 \)

Use \( a^2 - b^2 = (a - b)(a + b) \)

Here: \( x^2 - 3^2 = (x - 3)(x + 3) \)

Example 2: Perfect Square Trinomial

Factor: \( x^2 + 6x + 9 \)

Recognize \( a^2 + 2ab + b^2 = (a + b)^2 \)

Here: \( x^2 + 2*3*x + 3^2 = (x + 3)^2 \)

Example 3: Sum of Cubes

Factor: \( x^3 + 8 \)

Use \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)

Here: \( x^3 + 2^3 = (x + 2)(x^2 - 2x + 4) \)

Practice Problems

  1. Factor: \( x^2 - 16 \)
  2. Factor: \( 9x^2 + 12x + 4 \)
  3. Factor: \( x^3 - 27 \)
  4. Factor: \( 4x^2 - 25 \)
  5. Factor: \( 8x^3 + 27 \)